How to Start Training: The Eftect of Initialization and Architecture

Boris Hanin', David Rolnick?

'Texas A&M University, “Massachusetts Institute of Technology

Motivation

Neural networks may underperform due to local optima, saddle points, overfitting, etc.
More fatally, learning may not start at all.

Goals: (1) to ensure that networks at least get above random chance.
(2) to develop simple principles for architecture and 1nitialization.

We 1dentify two simple reasons learning fails and prove how to avoid them.

Effect of 1.1.d. Weight Variance on Activation Length and Early Training

100 . : . SR

Initialization
2X He normal
— He normal
He uniform
—— He normal (truncated)
—  Glorot uniform
Glorot normal

10° \
12 | Initialization .

2X He normal

10-18 2 of
——  He normal
24 .
e Bl o He uniform ;
103°|| — He normal (truncated)

——  Glorot uniform
Glorot normal

Mean squared length
Mean epochs to 20%

10 210 310 410 Sb 610 710 810 910 100 10 210 310 410 Sb 610 710 810 90 100
Network depth Network depth
Fig. 1: Left panel shows exponential growth of the mean squared length of the output

vector for many popular initializations. Right panel shows the negative impact of
very large and small output lengths on early training over MNIST.

Definitions

We consider ReLU networks A at mitialization.
FC & ConvNet: Depth d, layer widths ng, .. ., ng (or #features for ConvNets).
Independent weights/biases with marginals symmetric around O.
Let act') be the vector of activations at layer 7, and set:

M; = |lactY|[3 /n;
We consider a network with residual modules NV; weighted by s

N(z) =z + s1Ni(x) + saNa(x + s1N1(x)) + ...

ResNet:

Summary for Mathematicians

We study ReL U networks at iitialization, with randomly 1nitialized weights.
Consider the mean and variance of the length of each layer’s activation vector.

FC & ConvNets: Mean 1s exponential in variance of 1.1.d. weights.
Variance 1s exponential in sum of reciprocals of layer widths.

ResNets: Mean and variance are both exponential in residual block weights.

Effect of Network Architecture on Early Trainin

100 | | | | | | | | 100

Layer widths
Alternating 30, 10

— Alternating 30, 10 ¢
a0 | Half 30 then half 10 / a0 | Half 30 then half 10
—— Half 10 then half 30 «* s Half 10 then half 30
— Constant width 15

e« Constant width 15 -
Constant width 20 Constant width 20

Layer widths

60 | 60 |

40 | 40 |

Mean epochs to 20%
Mean epochs to 20%

20 | . 20

O | | | | | | | | l | | | | |
10 20 30 40 50 60 70 80 90 100 0 1 2 3 4 5 6 7
Network depth Sum of reciprocals

Fig. 2: Both panels show early training dynamics for a variety of architectures,
when training on MNIST. In the left panel, the pink curve has a smaller sum of
reciprocals at each depth, while all other curves have the same (larger) sum.

Formal statements

Suppose:  Var|weights| = k- 2/fan-in
FC & ConvNet: o  E[My] = & o
o kK = 1 > @[M], Var|My| ~ exp Can_l
L 4 -
ResNet: e k =1 > [My], Var[My] ~ exp _Cisj_

7=1

Summary for Engineers

Poor initialization and poor architecture both stop networks from learning.

Initialization: Use 1.1.d. weights with variance 2/fan-in (e.g. He normal).
Watch out for truncated normals!

Architecture: Width (or #features in ConvNets) should grow with depth.
Even a single narrow layer makes training hard.

ResNets avoid the architecture 1ssues, but residual blocks should be weighted.

Effect of Residual Module Weights

100

-

-
o
I

Scale sequence
—  Constant 1
Decay ratio 0.9
—— Decay ratio 0.75
— Decay ratio 0.5

Scale sequence
| — Constant 1
Decay ratio 0.9
| — Decay ratio 0.75
21| — Decay ratio 0.5

80

60

— — 2 — —
o (- (- (- (-]
N N w N
F N Q0 N (o] (-

p—

-
N
o

40 |

Mean squared length
Mean epochs to 20%

=
- -
) 4 —d
N (o))

20

=
-
Qo

(-
o
N

—
-
o

20 30 40 50 60 70 80 90 100 5 10 15 20 25
Number of modules Number of modules

-
-

Fig. 3: Left panel shows the effect of residual module weights, given by different
geometric sequences, on the mean squared length of the output. Right panel shows
the corresponding impact on early training dynamics over MNIST.

Proof approach

(1) Layer activations in feedforward neural nets form a Markov chain.

(2) Squared size of layer activation vectors 1s an integrable submartingale.
Therefore may apply Doob’s Pointwise Martingale Convergence Theorem.
(3) Variance of squared size of layer activations 1s exponential in sum of reciprocals
of hidden layer widths / residual module weights. Thus, need uniform bounds
on sum of reciprocals or layer widths / residual module weights to apply

Doob’s L, Martingale Convergence Theorem.



