
Proof approachFormal statementsDefinitions

Summary for EngineersMotivation
Neural networks may underperform due to local optima, saddle points, overfitting, etc.
More fatally, learning may not start at all.

Goals: (1) to ensure that networks at least get above random chance.
 (2) to develop simple principles for architecture and initialization.

We identify two simple reasons learning fails and prove how to avoid them.

We study ReLU networks at initialization, with randomly initialized weights.
Consider the mean and variance of the length of each layer’s activation vector.

FC & ConvNets: Mean is exponential in variance of i.i.d. weights.
 Variance is exponential in sum of reciprocals of layer widths.

ResNets: Mean and variance are both exponential in residual block weights.

Poor initialization and poor architecture both stop networks from learning.
Initialization: Use i.i.d. weights with variance 2/fan-in (e.g. He normal).

 Watch out for truncated normals!
Architecture: Width (or #features in ConvNets) should grow with depth.

Even a single narrow layer makes training hard.
ResNets avoid the architecture issues, but residual blocks should be weighted.

Fig. 1: Left panel shows exponential growth of the mean squared length of the output
vector for many popular initializations. Right panel shows the negative impact of

very large and small output lengths on early training over MNIST.

How to Start Training: The Effect of Initialization and Architecture
Boris Hanin1, David Rolnick2

1Texas A&M University, 2Massachusetts Institute of Technology

Effect of i.i.d. Weight Variance on Activation Length and Early Training Effect of Network Architecture on Early Training

Fig. 2: Both panels show early training dynamics for a variety of architectures,
when training on MNIST. In the left panel, the pink curve has a smaller sum of
reciprocals at each depth, while all other curves have the same (larger) sum.

Fig. 3: Left panel shows the effect of residual module weights, given by different
geometric sequences, on the mean squared length of the output. Right panel shows

the corresponding impact on early training dynamics over MNIST.

Effect of Residual Module Weights

(1) Layer activations in feedforward neural nets form a Markov chain.
(2) Squared size of layer activation vectors is an integrable submartingale.

 Therefore may apply Doob’s Pointwise Martingale Convergence Theorem.
(3) Variance of squared size of layer activations is exponential in sum of reciprocals
 of hidden layer widths / residual module weights. Thus, need uniform bounds
 on sum of reciprocals or layer widths / residual module weights to apply
 Doob’s Martingale Convergence Theorem.

We consider ReLU networks at initialization.
FC & ConvNet: Depth , layer widths (or #features for ConvNets).
 Independent weights/biases with marginals symmetric around 0.

 Let be the vector of activations at layer , and set:

ResNet: We consider a network with residual modules weighted by :

Suppose:

FC & ConvNet:

ResNet:

Summary for Mathematicians

