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Problem
An eigenvector of a matrix A ∈ Rn×n is a nonzero vector x ∈ Rn such
that Ax = λx , where the value λ is called an eigenvalue. The trace of a
square matrix is the sum of the values along the diagonal. Prove that
the trace of a matrix equals the sum of the eigenvalues.

(Please don’t post your ideas in the chat just yet, we’ll discuss the
problem soon in class.)
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Course Announcements

Problem Set 2 available on Slack and MyCourses
Office hours today right after class
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Linearly independent vectors

A set of vectors v1, . . . , vk are linearly dependent if there are
coefficients c1, . . . , ck , at least one of them nonzero, such that:

c1v1 + . . .+ ckvk = 0.

Otherwise, we say that the vectors are linearly independent.
Geometric interpretation: any k linearly independent vectors, plus
all linear combinations of them, define a k -dimensional linear
subspace of Rn (e.g. a line, plane, 3D subspace, etc.)
Example: [1,0,0], [0,2,2] are linearly independent, so the vectors

c1[1,0,0] + c2[0,2,2]

form a (2D) plane in R3. For example, [10,1,1] is in this plane.
How many linearly independent vectors can be there be in Rn?
There can be at most n.
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Rank of a matrix

The column rank of an m × n matrix is the number of linearly
independent columns of the matrix.
Likewise, the row rank is the number of linearly independent rows.
Example - what are the row and column ranks of:

2 0 1 0 0
1 0 0 0 0
0 0 1 0 0
0 4 0 4 0


Row rank = 3, column rank = 3.
Are the row and column rank always equal? Why?

David Rolnick COMP 761: Linear Algebra II Sep 28, 2020 5 / 21



Rank of a matrix

The column rank of an m × n matrix is the number of linearly
independent columns of the matrix.

Likewise, the row rank is the number of linearly independent rows.
Example - what are the row and column ranks of:

2 0 1 0 0
1 0 0 0 0
0 0 1 0 0
0 4 0 4 0


Row rank = 3, column rank = 3.
Are the row and column rank always equal? Why?

David Rolnick COMP 761: Linear Algebra II Sep 28, 2020 5 / 21



Rank of a matrix

The column rank of an m × n matrix is the number of linearly
independent columns of the matrix.
Likewise, the row rank is the number of linearly independent rows.

Example - what are the row and column ranks of:
2 0 1 0 0
1 0 0 0 0
0 0 1 0 0
0 4 0 4 0


Row rank = 3, column rank = 3.
Are the row and column rank always equal? Why?

David Rolnick COMP 761: Linear Algebra II Sep 28, 2020 5 / 21



Rank of a matrix

The column rank of an m × n matrix is the number of linearly
independent columns of the matrix.
Likewise, the row rank is the number of linearly independent rows.
Example - what are the row and column ranks of:

2 0 1 0 0
1 0 0 0 0
0 0 1 0 0
0 4 0 4 0



Row rank = 3, column rank = 3.
Are the row and column rank always equal? Why?

David Rolnick COMP 761: Linear Algebra II Sep 28, 2020 5 / 21



Rank of a matrix

The column rank of an m × n matrix is the number of linearly
independent columns of the matrix.
Likewise, the row rank is the number of linearly independent rows.
Example - what are the row and column ranks of:

2 0 1 0 0
1 0 0 0 0
0 0 1 0 0
0 4 0 4 0


Row rank = 3, column rank = 3.

Are the row and column rank always equal? Why?

David Rolnick COMP 761: Linear Algebra II Sep 28, 2020 5 / 21



Rank of a matrix

The column rank of an m × n matrix is the number of linearly
independent columns of the matrix.
Likewise, the row rank is the number of linearly independent rows.
Example - what are the row and column ranks of:

2 0 1 0 0
1 0 0 0 0
0 0 1 0 0
0 4 0 4 0


Row rank = 3, column rank = 3.
Are the row and column rank always equal? Why?

David Rolnick COMP 761: Linear Algebra II Sep 28, 2020 5 / 21



Rank of a matrix

Suppose that a matrix A ∈ Rm×n has column rank r .
There must be some r vectors v1, v2, . . . , vr ∈ Rm such that every
column of A is a linear combination of them.
We can write this as:

A =


...

...
...

v1 v2 · · · vr
...

...
...




w11 w12 · · · w1n
w21 w22 · · · w2n

...
...

. . .
...

wr1 wr2 · · · wrn

 .
We can express this as A = VW .
Then, AT = W T V T , which means that the columns of AT are
linear combinations of the columns of W T .
But the columns of AT are the rows of A.
Therefore, row rank of A is at most # columns of W T , which is r .
We conclude row rank of A ≤ column rank of A.
Similarly (using AT ), column rank ≤ row rank, so they are equal.
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Rank of a matrix

This means we can refer to just the rank of a matrix.
For matrices A,B, what can we say about rk(AB) in terms of rk(A)
and rk(B)?
The columns of AB are linear combinations of the columns of A,
so rk(AB) ≤ rk(A).
The rows of AB are linear combinations of the rows of A, so
rk(AB) ≤ rk(B).
What is the rank of the n × n identity matrix I?
All the columns are linearly independent, so rank = n (full-rank).
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Inverse matrices

If A ∈ Rn×n, then an inverse matrix to A (if it exists) is a matrix B
such that

AB = I,

where I ∈ Rn×n is the identity matrix.

Fact 1. If A has an inverse, then rk(A) = n.
If AB = I, we know rk(A) ≥ rk(I) = n.
Since an n × n matrix has rank at most n, A has rank n.

Fact 2. If rk A = n, then A must have an inverse.
At most n linearly independent vectors are possible in Rn.
So if rk A = n, then all columns of I must be expressible as linear
combinations of columns in A.
Therefore, for some B, we have AB = I.
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Inverse matrices

Fact 3. Inverses are unique.
If AB1 = I = AB2, then

A(B1 − B2) = I − I = 0.

But that means that some nonzero combination of the columns of
A is 0, impossible since rk(A) = n.

Fact 4. If AB = I, then BA = I.
If AB = I, then rk A = n, so rk AT = n.
Therefore, AT has an inverse CT .
Taking transposes of AT CT = I, we get CA = I.
But then:

C = C(AB) = (CA)B = B.

We write A−1 for the inverse of A.
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Systems of linear equations

One of many uses of inverse matrices - solving systems of linear
equations.
Suppose, for example:

x + 3y − z = 2
2x + y = 0
−y + z = 1

Can write as Av = b, where:

A =

 1 3 −1
2 1 0
0 −1 1

 , v =

 x
y
z

 , b =

 2
0
1


If A is invertible, the (unique) solution is v = A−1b.
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Orthogonal matrices

An orthogonal matrix A is one where AT A = I, so AT = A−1.

For example:

 1 0 0
0 1 0
0 0 1

 ,
 0 1 0

0 0 1
1 0 0

 ,[ √2
2

√
2

2√
2

2 −
√

2
2

]
.

Equivalent to saying that (i) every two different columns of A have
dot product 0, (ii) the dot product of any column with itself is 1.
(i) means any two columns are perpendicular (aka orthogonal).
(ii) means the norm of every column is 1.
These two conditions mean the columns of an orthogonal matrix
form a basis (essentially a different set of coordinate axes):

David Rolnick COMP 761: Linear Algebra II Sep 28, 2020 11 / 21



Orthogonal matrices

An orthogonal matrix A is one where AT A = I, so AT = A−1.

For example:

 1 0 0
0 1 0
0 0 1

 ,
 0 1 0

0 0 1
1 0 0

 ,[ √2
2

√
2

2√
2

2 −
√

2
2

]
.

Equivalent to saying that (i) every two different columns of A have
dot product 0, (ii) the dot product of any column with itself is 1.
(i) means any two columns are perpendicular (aka orthogonal).
(ii) means the norm of every column is 1.
These two conditions mean the columns of an orthogonal matrix
form a basis (essentially a different set of coordinate axes):

David Rolnick COMP 761: Linear Algebra II Sep 28, 2020 11 / 21



Orthogonal matrices

An orthogonal matrix A is one where AT A = I, so AT = A−1.

For example:

 1 0 0
0 1 0
0 0 1

 ,
 0 1 0

0 0 1
1 0 0

 ,[ √2
2

√
2

2√
2

2 −
√

2
2

]
.

Equivalent to saying that (i) every two different columns of A have
dot product 0, (ii) the dot product of any column with itself is 1.
(i) means any two columns are perpendicular (aka orthogonal).
(ii) means the norm of every column is 1.
These two conditions mean the columns of an orthogonal matrix
form a basis (essentially a different set of coordinate axes):

David Rolnick COMP 761: Linear Algebra II Sep 28, 2020 11 / 21



Orthogonal matrices

An orthogonal matrix A is one where AT A = I, so AT = A−1.

For example:

 1 0 0
0 1 0
0 0 1

 ,
 0 1 0

0 0 1
1 0 0

 ,[ √2
2

√
2

2√
2

2 −
√

2
2

]
.

Equivalent to saying that (i) every two different columns of A have
dot product 0, (ii) the dot product of any column with itself is 1.

(i) means any two columns are perpendicular (aka orthogonal).
(ii) means the norm of every column is 1.
These two conditions mean the columns of an orthogonal matrix
form a basis (essentially a different set of coordinate axes):

David Rolnick COMP 761: Linear Algebra II Sep 28, 2020 11 / 21



Orthogonal matrices

An orthogonal matrix A is one where AT A = I, so AT = A−1.

For example:

 1 0 0
0 1 0
0 0 1

 ,
 0 1 0

0 0 1
1 0 0

 ,[ √2
2

√
2

2√
2

2 −
√

2
2

]
.

Equivalent to saying that (i) every two different columns of A have
dot product 0, (ii) the dot product of any column with itself is 1.
(i) means any two columns are perpendicular (aka orthogonal).

(ii) means the norm of every column is 1.
These two conditions mean the columns of an orthogonal matrix
form a basis (essentially a different set of coordinate axes):

David Rolnick COMP 761: Linear Algebra II Sep 28, 2020 11 / 21



Orthogonal matrices

An orthogonal matrix A is one where AT A = I, so AT = A−1.

For example:

 1 0 0
0 1 0
0 0 1

 ,
 0 1 0

0 0 1
1 0 0

 ,[ √2
2

√
2

2√
2

2 −
√

2
2

]
.

Equivalent to saying that (i) every two different columns of A have
dot product 0, (ii) the dot product of any column with itself is 1.
(i) means any two columns are perpendicular (aka orthogonal).
(ii) means the norm of every column is 1.

These two conditions mean the columns of an orthogonal matrix
form a basis (essentially a different set of coordinate axes):

David Rolnick COMP 761: Linear Algebra II Sep 28, 2020 11 / 21



Orthogonal matrices

An orthogonal matrix A is one where AT A = I, so AT = A−1.

For example:

 1 0 0
0 1 0
0 0 1

 ,
 0 1 0

0 0 1
1 0 0

 ,[ √2
2

√
2

2√
2

2 −
√

2
2

]
.

Equivalent to saying that (i) every two different columns of A have
dot product 0, (ii) the dot product of any column with itself is 1.
(i) means any two columns are perpendicular (aka orthogonal).
(ii) means the norm of every column is 1.
These two conditions mean the columns of an orthogonal matrix
form a basis (essentially a different set of coordinate axes):

David Rolnick COMP 761: Linear Algebra II Sep 28, 2020 11 / 21



Rotation matrices

In 2 dimensions, orthogonal matrices include rotation matrices:[
cos θ − sin θ
sin θ cos θ

]
The columns [cos θ, sin θ] and [− sin θ, cos θ] are orthogonal and
both have norm 1.

For example, to rotate [3,4] by 45◦, we compute:[
cos 45◦ − sin 45◦

sin 45◦ cos 45◦

] [
3
4

]
=

[ √
2/2 −

√
2/2√

2/2
√

2/2

] [
3
4

]
=

[
−
√

2/2
7
√

2/2

]
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Determinants

The determinant of a square matrix can be defined recursively.
1× 1: If A = [a11], then det(A) = a11.

2× 2: If A =

[
a11 a12
a21 a22

]
, then det(A) = a11a22 − a12a21.

3× 3: If A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

, then

det(A) = a11 det
[

a22 a23
a32 a33

]
−a12 det

[
a21 a23
a31 a33

]
+a13 det

[
a21 a22
a31 a32

]
.

n× n: If A ∈ Rn×n, let Ak be obtained from A by deleting row 1 and
column k . Then,

det(A) = a11 det(A1)− a12 det(A2) + · · ·+ (−1)na1n det(An).
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n× n: If A ∈ Rn×n, let Ak be obtained from A by deleting row 1 and
column k . Then,

det(A) = a11 det(A1)− a12 det(A2) + · · ·+ (−1)na1n det(An).
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Expanded out, the determinant will look like the sum/difference of
a bunch of products, e.g.:

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


det(A) = a11a22a33 − a11a23a32 − a12a21a33

+ a12a23a31 + a13a21a32 − a13a22a31.

Each one of the products, e.g. a13a21a32, will have one entry in
each column, and also one entry in each row.
The sign of the product will be the sign of the permutation (can
look up if you are curious).
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Determinant facts

1 The determinant is ± the volume of the parallelepiped formed by
the columns of the matrix.

2 From this, we can conclude that det(A) = 0 unless the columns of
A span the whole space Rn. That is, all of these are equivalent for
A ∈ Rn×n:

det(A) 6= 0, A has rank n, A is invertible.

3 det(AT ) = det(A)
4 det(AB) = det(A)det(B).
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Eigenvalues and eigenvectors

An eigenvector of a matrix A ∈ Rn×n is a nonzero vector x ∈ Rn

such that Ax = λx .
The value λ is called an eigenvalue.
Example:

A =

[
2 2

1/2 2

]
,

[
2 2

1/2 2

] [
2
1

]
=

[
6
3

]
= 3

[
2
1

]
,

so
[

2
1

]
is an eigenvector with eigenvalue 3.

Note: If x is an eigenvector with eigenvalue λ, then cx is too for
any c 6= 0.
In practice, we often scale x so that ||x || = 1.
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Characteristic polynomial

We can write Ax = λx as (A− λI)x = 0, where I ∈ Rn×n is the
identity matrix.
When does this have solutions apart from x = 0?
If (A− λI) is invertible, then x = (A− λI)−10 = 0.
There can only be nonzero solutions x if (A− λI) is non-invertible.
That happens if det(A− λI) = 0.
Note that det(A− λI) is a degree-n polynomial in λ.
Example

A =

[
2 2

1/2 2

]
, A−λI =

[
2− λ 2
1/2 2− λ

]
, det(A−λI) = λ2−4λ+3.

This is called the characteristic polynomial.
The characteristic polynomial’s roots = the eigenvalues (may be
complex).
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The trace

The trace tr(A) of a square matrix A is the sum of diagonal entries.

Example: tr
[

2 2
1/2 2

]
= 4.

Why is the trace the sum of the eigenvalues?
The characteristic polynomial is det(A− λI).
Let’s look at its λn−1 term.
The only way to get λn−1 in computing the determinant is via the
product of the diagonal entries.

A =

[
2 2

1/2 2

]
, A−λI =

[
2− λ 2
1/2 2− λ

]
, det(A−λI) = λ2−4λ+3.

So the coefficient on λn−1 comes from the product of the diagonal
entries (a11 − λ)(a22 − λ) · · · (ann − λ).
But by Vieta’s formulas, this coefficient is just:

n∑
k=1

akk = tr(A).
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Determinants and eigenvalues
Why is the determinant the product of the eigenvalues?

Let’s look at the constant term of det(A− λI).
Setting λ = 0, get constant term det(A).
By Vieta’s formulas, the product of the roots equals det(A).

A =

[
2 2

1/2 2

]
, A−λI =

[
2− λ 2
1/2 2− λ

]
, det(A−λI) = λ2−4λ+3.
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Next time!

Graph Theory II
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