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Problem

An eigenvector of a matrix A € R™" is a nonzero vector x € R"” such

that Ax = Ax, where the value ) is called an eigenvalue. The trace of a
square matrix is the sum of the values along the diagonal. Prove that
the trace of a matrix equals the sum of the eigenvalues.

(Please don’t post your ideas in the chat just yet, we’ll discuss the
problem soon in class.)
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Course Announcements

@ Problem Set 2 available on Slack and MyCourses
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Course Announcements

@ Problem Set 2 available on Slack and MyCourses
@ Office hours today right after class
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Linearly independent vectors

@ A set of vectors vy, ..., vk are linearly dependent if there are
coefficients ¢y, . .., ¢, at least one of them nonzero, such that:

CiVi+ ...+ ckvk =0.
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Linearly independent vectors

@ A set of vectors vy, ..., vk are linearly dependent if there are
coefficients ¢y, . .., ¢, at least one of them nonzero, such that:

CiVi+ ...+ ckvk =0.

@ Otherwise, we say that the vectors are linearly independent.
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Linearly independent vectors

@ A set of vectors vy, ..., vk are linearly dependent if there are
coefficients ¢y, . .., ¢, at least one of them nonzero, such that:

CiVi+ ...+ ckvk =0.

@ Otherwise, we say that the vectors are linearly independent.

@ Geometric interpretation: any k linearly independent vectors, plus
all linear combinations of them, define a k-dimensional linear
subspace of R” (e.g. a line, plane, 3D subspace, etc.)
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Linearly independent vectors

@ A set of vectors vy, ..., vk are linearly dependent if there are
coefficients ¢y, . .., ¢, at least one of them nonzero, such that:

CiVi+ ...+ ckvk =0.

@ Otherwise, we say that the vectors are linearly independent.

@ Geometric interpretation: any k linearly independent vectors, plus
all linear combinations of them, define a k-dimensional linear
subspace of R” (e.g. a line, plane, 3D subspace, etc.)

@ Example: [1,0,0], [0, 2, 2] are linearly independent, so the vectors
Gy [1 ) 07 O] + 02[07 27 2]

form a (2D) plane in R3. For example, [10, 1, 1] is in this plane.

David Rolnick COMP 761: Linear Algebra Il Sep 28, 2020 4/21



Linearly independent vectors

@ A set of vectors vy, ..., vk are linearly dependent if there are
coefficients ¢y, . .., ¢, at least one of them nonzero, such that:

CiVi+ ...+ ckvk =0.

@ Otherwise, we say that the vectors are linearly independent.

@ Geometric interpretation: any k linearly independent vectors, plus
all linear combinations of them, define a k-dimensional linear
subspace of R” (e.g. a line, plane, 3D subspace, etc.)

@ Example: [1,0,0], [0, 2, 2] are linearly independent, so the vectors
Gy [1 ) 07 O] + 02[07 27 2]

form a (2D) plane in R3. For example, [10, 1, 1] is in this plane.
@ How many linearly independent vectors can be there be in R"?

David Rolnick COMP 761: Linear Algebra Il Sep 28, 2020 4/21



Linearly independent vectors

@ A set of vectors vy, ..., vk are linearly dependent if there are
coefficients ¢y, . .., ¢, at least one of them nonzero, such that:

CiVi+ ...+ ckvk =0.

@ Otherwise, we say that the vectors are linearly independent.

@ Geometric interpretation: any k linearly independent vectors, plus
all linear combinations of them, define a k-dimensional linear
subspace of R” (e.g. a line, plane, 3D subspace, etc.)

@ Example: [1,0,0], [0, 2, 2] are linearly independent, so the vectors
Gy [1 ) 07 O] + 02[07 27 2]

form a (2D) plane in R3. For example, [10, 1, 1] is in this plane.
@ How many linearly independent vectors can be there be in R"?
@ There can be at most n.
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Rank of a matrix

@ The column rank of an m x n matrix is the number of linearly
independent columns of the matrix.
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Rank of a matrix

@ The column rank of an m x n matrix is the number of linearly
independent columns of the matrix.

@ Likewise, the row rank is the number of linearly independent rows.
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Rank of a matrix

@ The column rank of an m x n matrix is the number of linearly
independent columns of the matrix.

@ Likewise, the row rank is the number of linearly independent rows.
@ Example - what are the row and column ranks of:

2 0100
10000
00100
04040
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Rank of a matrix

@ The column rank of an m x n matrix is the number of linearly
independent columns of the matrix.

@ Likewise, the row rank is the number of linearly independent rows.
@ Example - what are the row and column ranks of:

2 0100

1 0000

00100

0 4040
@ Row rank = 3, column rank = 3.
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Rank of a matrix

@ The column rank of an m x n matrix is the number of linearly
independent columns of the matrix.

@ Likewise, the row rank is the number of linearly independent rows.
@ Example - what are the row and column ranks of:

2 0100
10000
00100
04040

@ Row rank = 3, column rank = 3.
@ Are the row and column rank always equal? Why?
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Rank of a matrix

@ Suppose that a matrix A € R™" has column rank r.
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Rank of a matrix

@ Suppose that a matrix A € R™" has column rank r.
@ There must be some r vectors vy, Vo, ..., v, € R™ such that every
column of Ais a linear combination of them.
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Rank of a matrix

@ Suppose that a matrix A € R™" has column rank r.

@ There must be some r vectors vy, Vo, ..., v, € R™ such that every
column of Ais a linear combination of them.

@ We can write this as:

Wi W2 -0 Wyp
T ) Woi Wao -+ Wop

A=l vy v - v
Wit W - W
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Rank of a matrix

@ Suppose that a matrix A € R™" has column rank r.

@ There must be some r vectors vy, Vo, ..., v, € R™ such that every
column of Ais a linear combination of them.

@ We can write this as:

Wi W2 -0 Wyp
T ) Woi Wao -+ Wop

A=l vy v - v
Wit W - W

@ We can express thisas A= VIWV.
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Rank of a matrix

@ Suppose that a matrix A € R™" has column rank r.

@ There must be some r vectors vy, Vo, ..., v, € R™ such that every
column of Ais a linear combination of them.

@ We can write this as:

Wi W2 -0 Wyp
o ' Woi Wao -+ Wop

A= vy v -V .
Wit W - W

@ We can express thisas A= VIWV.
@ Then, AT = WT VT, which means that the columns of AT are
linear combinations of the columns of WT.
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Rank of a matrix

@ Suppose that a matrix A € R™" has column rank r.

@ There must be some r vectors vy, Vo, ..., v, € R™ such that every
column of Ais a linear combination of them.

@ We can write this as:

Wi W2 -0 Wyp
T ) Woi Wao -+ Wop

A= vy v -V .
Wit W -+ W

@ We can express thisas A= VIWV.

@ Then, AT = WT VT, which means that the columns of A are
linear combinations of the columns of WT.

@ But the columns of AT are the rows of A.
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Rank of a matrix

@ Suppose that a matrix A € R™" has column rank r.

@ There must be some r vectors vy, Vo, ..., v, € R™ such that every
column of Ais a linear combination of them.

@ We can write this as:

Wi W2 -0 Wyp
o ' Woi Wao -+ Wop

A= vy v -V .
Wit W -+ W

@ We can express thisas A= VIWV.

@ Then, AT = WT VT, which means that the columns of A are
linear combinations of the columns of WT.

@ But the columns of AT are the rows of A.

@ Therefore, row rank of A is at most # columns of W', which is r.
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Rank of a matrix

@ Suppose that a matrix A € R™" has column rank r.

@ There must be some r vectors vy, Vo, ..., v, € R™ such that every
column of Ais a linear combination of them.

@ We can write this as:

Wi W2 -0 Wyp
T ) Woi Wao -+ Wop

A= vy v -V .
Wit W -+ W

@ We can express thisas A= VIWV.

@ Then, AT = WT VT, which means that the columns of A are
linear combinations of the columns of WT.

@ But the columns of AT are the rows of A.

@ Therefore, row rank of A is at most # columns of W', which is r.

@ We conclude row rank of A < column rank of A.
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Rank of a matrix

@ Suppose that a matrix A € R™" has column rank r.

@ There must be some r vectors vy, Vo, ..., v, € R™ such that every
column of Ais a linear combination of them.

@ We can write this as:

Wi W2 -0 Wyp
o ' Woi Wao -+ Wop

A= vy v -V .
Wit W -+ W

@ We can express thisas A= VIWV.

@ Then, AT = WT VT, which means that the columns of A are
linear combinations of the columns of WT.

@ But the columns of AT are the rows of A.

@ Therefore, row rank of A is at most # columns of W', which is r.

@ We conclude row rank of A < column rank of A.

@ Similarly (using A7), column rank < row rank, so they are equal.
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Rank of a matrix

@ This means we can refer to just the rank of a matrix.
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Rank of a matrix

@ This means we can refer to just the rank of a matrix.

@ For matrices A, B, what can we say about rk(AB) in terms of rk(A)
and rk(B)?
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Rank of a matrix

@ This means we can refer to just the rank of a matrix.

@ For matrices A, B, what can we say about rk(AB) in terms of rk(A)
and rk(B)?

@ The columns of AB are linear combinations of the columns of A,
so rk(AB) < rk(A).
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Rank of a matrix

@ This means we can refer to just the rank of a matrix.

@ For matrices A, B, what can we say about rk(AB) in terms of rk(A)
and rk(B)?

@ The columns of AB are linear combinations of the columns of A,
so rk(AB) < rk(A).

@ The rows of AB are linear combinations of the rows of A, so
rk(AB) < rk(B).
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Rank of a matrix

@ This means we can refer to just the rank of a matrix.

@ For matrices A, B, what can we say about rk(AB) in terms of rk(A)
and rk(B)?

@ The columns of AB are linear combinations of the columns of A,
so rk(AB) < rk(A).

@ The rows of AB are linear combinations of the rows of A, so
rk(AB) < rk(B).

@ What is the rank of the n x n identity matrix /?
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Rank of a matrix

@ This means we can refer to just the rank of a matrix.

@ For matrices A, B, what can we say about rk(AB) in terms of rk(A)
and rk(B)?

@ The columns of AB are linear combinations of the columns of A,
so rk(AB) < rk(A).

@ The rows of AB are linear combinations of the rows of A, so
rk(AB) < rk(B).

@ What is the rank of the n x n identity matrix /?

@ All the columns are linearly independent, so rank = n (full-rank).

David Rolnick COMP 761: Linear Algebra Il Sep 28, 2020 7/21



Inverse matrices
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Inverse matrices

e If Ae R™" then an inverse matrix to A (if it exists) is a matrix B
such that
AB =1,

where | € R"™" is the identity matrix.
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Inverse matrices

e If Ae R™" then an inverse matrix to A (if it exists) is a matrix B
such that
AB =1,

where | € R"™" is the identity matrix.

Fact 1. If A has an inverse, then rk(A) = n.
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Inverse matrices

e If Ae R™" then an inverse matrix to A (if it exists) is a matrix B
such that
AB =1,
where | € R"™" is the identity matrix.
Fact 1. If A has an inverse, then rk(A) = n.
@ If AB = I, we know rk(A) > rk(/) = n.
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Inverse matrices

e If Ae R™" then an inverse matrix to A (if it exists) is a matrix B
such that
AB =1,

where | € R"™" is the identity matrix.

Fact 1. If A has an inverse, then rk(A) = n.
@ If AB = I, we know rk(A) > rk(/) = n.
@ Since an n x n matrix has rank at most n, A has rank n.
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Inverse matrices

e If Ae R™" then an inverse matrix to A (if it exists) is a matrix B
such that
AB =1,

where | € R"™" is the identity matrix.

Fact 1. If A has an inverse, then rk(A) = n.

@ If AB = I, we know rk(A) > rk(/) = n.

@ Since an n x n matrix has rank at most n, A has rank n.
Fact 2. If rk A = n, then A must have an inverse.
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Inverse matrices

e If Ae R™" then an inverse matrix to A (if it exists) is a matrix B
such that
AB =1,

where | € R s the identity matrix.
Fact 1. If A has an inverse, then rk(A) = n.
@ If AB = I, we know rk(A) > rk(/) = n.
@ Since an n x n matrix has rank at most n, A has rank n.

Fact 2. If rk A= n, then A must have an inverse.
@ At most n linearly independent vectors are possible in R”.
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Inverse matrices

e If Ae R™" then an inverse matrix to A (if it exists) is a matrix B
such that
AB =1,

where | € R s the identity matrix.

Fact 1. If A has an inverse, then rk(A) = n.

@ If AB = I, we know rk(A) > rk(/) = n.

@ Since an n x n matrix has rank at most n, A has rank n.
Fact 2. If rk A= n, then A must have an inverse.

@ At most n linearly independent vectors are possible in R”.

@ So if rk A = n, then all columns of / must be expressible as linear
combinations of columns in A.
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Inverse matrices

e If Ae R™" then an inverse matrix to A (if it exists) is a matrix B
such that
AB =1,

where | € R s the identity matrix.

Fact 1. If A has an inverse, then rk(A) = n.

@ If AB = I, we know rk(A) > rk(/) = n.

@ Since an n x n matrix has rank at most n, A has rank n.
Fact 2. If rk A= n, then A must have an inverse.

@ At most n linearly independent vectors are possible in R”.

@ So if rk A = n, then all columns of / must be expressible as linear
combinations of columns in A.

@ Therefore, for some B, we have AB = |.
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Inverse matrices
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Inverse matrices

Fact 3. Inverses are unique.
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Inverse matrices

Fact 3. Inverses are unique.
o If AB; = | = AB,, then

ABy —By)=1—1=0.
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Inverse matrices

Fact 3. Inverses are unique.
o If AB; = | = AB,, then

ABi — By) = | — 1 =0.

@ But that means that some nonzero combination of the columns of
Ais 0, impossible since rk(A) = n.
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Inverse matrices
Fact 3. Inverses are unique.
@ If AB; = | = AB,, then
ABi —B)=1-1=0.

@ But that means that some nonzero combination of the columns of
Ais 0, impossible since rk(A) = n.
Fact 4. If AB =/, then BA= 1.
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Inverse matrices

Fact 3. Inverses are unique.
o If AB; = | = AB,, then

ABi — By) = | — 1 =0.

@ But that means that some nonzero combination of the columns of
Ais 0, impossible since rk(A) = n.
Fact4. If AB=1/,then BA= 1.
o IfAB=1thenrk A= n, sork AT = n.
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Inverse matrices

Fact 3. Inverses are unique.
o If AB; = | = AB,, then

ABi —By)=1—-1=0.
@ But that means that some nonzero combination of the columns of
Ais 0, impossible since rk(A) = n.
Fact 4. If AB =/, then BA= 1.

o IfAB=1thenrk A= n, sork AT = n.
@ Therefore, AT has an inverse C’.
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Inverse matrices

Fact 3. Inverses are unique.
o If AB; = | = AB,, then

ABy —By)=1—1=0.

@ But that means that some nonzero combination of the columns of
Ais 0, impossible since rk(A) = n.
Fact4. If AB=1/,then BA= 1.
o IfAB=1thenrk A= n, sork AT = n.
@ Therefore, AT has an inverse C’.
@ Taking transposes of ATCT = I, we get CA = I.
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Inverse matrices

Fact 3. Inverses are unique.
o If AB; = | = AB,, then

ABy —By)=1—1=0.

@ But that means that some nonzero combination of the columns of
Ais 0, impossible since rk(A) = n.
Fact4. If AB=1/,then BA= 1.
o IfAB=1thenrk A= n, sork AT = n.
@ Therefore, AT has an inverse C’.
@ Taking transposes of ATCT = I, we get CA = I.

@ But then:
C=C(AB)=(CA)B=B.
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Inverse matrices

Fact 3. Inverses are unique.
o If AB; = | = AB,, then

ABy —By)=1—1=0.

@ But that means that some nonzero combination of the columns of
Ais 0, impossible since rk(A) = n.
Fact4. If AB=1/,then BA= 1.
o IfAB=1thenrk A= n, sork AT = n.
@ Therefore, AT has an inverse C’.
@ Taking transposes of ATCT = I, we get CA = I.

@ But then:
C=C(AB)=(CA)B=B.

We write A~ for the inverse of A.
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Systems of linear equations
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Systems of linear equations

@ One of many uses of inverse matrices - solving systems of linear
equations.
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Systems of linear equations

@ One of many uses of inverse matrices - solving systems of linear
equations.

@ Suppose, for example:

X+3y—z=2
2x+y=0
—y+z=1
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Systems of linear equations

@ One of many uses of inverse matrices - solving systems of linear
equations.

@ Suppose, for example:

X+3y—z=2
2x+y=0
—y+z=1

@ Can write as Av = b, where:
1 3 -1 X 2
A=2 1 0 |, v=1Yy |, b=10
0 —1 1 V4 1
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Systems of linear equations

@ One of many uses of inverse matrices - solving systems of linear
equations.

@ Suppose, for example:

X+3y—z=2
2x+y=0
—y+z=1

@ Can write as Av = b, where:

1 3 -1 X 2
A=2 1 0 |, v=1Yy |, b=10
0o -1 1 z 1
e If Ais invertible, the (unique) solutionis v = A= 'b.
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Orthogonal matrices
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Orthogonal matrices

@ An orthogonal matrix A is one where ATA=1,s0 AT = A",
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Orthogonal matrices

@ An orthogonal matrix A is one where ATA=1,s0 AT = A",

100 010 N
@ Forexample: | 0 1 0|, 0 O 1 ,[\2@ f@]
N

0 0 1 100 2
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Orthogonal matrices
@ An orthogonal matrix A is one where ATA=1/,s0o AT = A1,
100 010] 1 v
@ Forexample: | 0 1 0|, 0 O 1 ,[\2@ f@]
0 0 1 1 00

@ Equivalent to saying that (i) every two different columns of A have
dot product 0, (ii) the dot product of any column with itself is 1.
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Orthogonal matrices

@ An orthogonal matrix A is one where ATA=1,s0 AT = A",

100 010 N
@ Forexample: | 0 1 0|,/ 0 O 1 ,[\2@ f@]
0 0 1 1 00

@ Equivalent to saying that (i) every two different columns of A have
dot product 0, (ii) the dot product of any column with itself is 1.

@ (i) means any two columns are perpendicular (aka orthogonal).
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Orthogonal matrices

@ An orthogonal matrix A is one where ATA=1,s0 AT = A",
10070101z v

@ Forexample: | 0 1 0|,/ 0 O 1 ,[\2@ f@]
0 0 1 1 00

@ Equivalent to saying that (i) every two different columns of A have
dot product 0, (ii) the dot product of any column with itself is 1.

@ (i) means any two columns are perpendicular (aka orthogonal).
@ (ii) means the norm of every column is 1.
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Orthogonal matrices

@ An orthogonal matrix A is one where ATA=1/,s0o AT = A1,
10070101z v

@ Forexample: | 0 1 0|,/ 0 O 1 ,[\2@ f@]
0 0 1 1 00

@ Equivalent to saying that (i) every two different columns of A have
dot product 0, (ii) the dot product of any column with itself is 1.

@ (i) means any two columns are perpendicular (aka orthogonal).
@ (ii) means the norm of every column is 1.

@ These two conditions mean the columns of an orthogonal matrix
form a basis (essentially a different set of coordinate axes):

s
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Rotation matrices
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Rotation matrices

@ In 2 dimensions, orthogonal matrices include rotation matrices:

cosf) —sind
singd cosd
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Rotation matrices

@ In 2 dimensions, orthogonal matrices include rotation matrices:

cosf) —sind
singd cosd

@ The columns [cos §,sin 6] and [— sin #, cos 6] are orthogonal and

both have norm 1.

cosﬂé
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Rotation matrices

@ In 2 dimensions, orthogonal matrices include rotation matrices:

cosf) —sind
singd cosd

@ The columns [cos §,sin 6] and [— sin #, cos 6] are orthogonal and

both have norm 1.

cosGE

@ For example, to rotate [3, 4] by 45°, we compute:

3}_ [ V2/2 —/2/2

cos45° —sin45°
sin45°  cos45°

David Rolnick
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Determinants
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Determinants

@ The determinant of a square matrix can be defined recursively.
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Determinants

@ The determinant of a square matrix can be defined recursively.
@ 1 x 1:If A= [aq1], then det(A) = ay1.
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Determinants

@ The determinant of a square matrix can be defined recursively.
@ 1 x 1:If A= [aq1], then det(A) = ay1.
a a2

@ 2x2: IfA:[
az1 a2

:| , then det(A) = dy1do2 — ai2d21.
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Determinants

@ The determinant of a square matrix can be defined recursively.
@ 1 x 1:If A= [aq1], then det(A) = ay1.

e2x2: IfA= |: a2 ],then det(A) = a41802 — a12821.
doi  dgo

ayy a2 a3
@3x3:IfA=| axy axm a3 |,then
d31 daz ass

azo o3 azy dg3 azy dg2
det(A) = ay1 det —aqo det ajz det .
A 1 { dsp ds3 ] 12 { ds1  dss ]+ 13 { dsy  ds2 }
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Determinants

@ The determinant of a square matrix can be defined recursively.
@ 1 x 1:If A= [aq1], then det(A) = ay1.

e2x2: IfA= |: a2 ],then det(A) = a41802 — a12821.
doi  dgo

ayy a2 a3
@3x3:IfA=| axy axm a3 |,then
d31 daz ass

azo o3 azy dg3 azy dg2
det(A) = ay1 det —aqo det ajz det .
A 1 { dsp ds3 ] 12 { ds1  dss ]+ 13 { dsy  ds2 }

@ nxn:If Ae R™" let A¢ be obtained from A by deleting row 1 and
column k. Then,

det(A) = ai14 det(A1) — a2 det(Ag) + -+ (—1 )”amdet(An).
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Determinants

@ nxn:If Ae R™" let A¢ be obtained from A by deleting row 1 and
column k. Then,

det(A) = a;; det(Aq) — ajadet(Az) + - - + (—1)"a;, det(Ap).

@ Expanded out, the determinant will look like the sum/difference of
a bunch of products, e.qg.:

air a2 a3
A=| a1 axn axs
as1 daz2 ds3

det(A) = a11ax0a3s — a11823832 — 312821833
+ a12823831 + a13821832 — A13822a31-
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Determinants

@ nxn:If Ae R™" let A¢ be obtained from A by deleting row 1 and
column k. Then,

det(A) = a;; det(Aq) — ajadet(Az) + - - + (—1)"a;, det(Ap).

@ Expanded out, the determinant will look like the sum/difference of
a bunch of products, e.qg.:

air a2 a3
A=| a1 axn axs
as1 daz2 ds3

det(A) = a11ax0a3s — a11823832 — 312821833
+ a12823831 + a13821832 — A13822a31-

@ Each one of the products, e.g. ajza»1ass, will have one entry in
each column, and also one entry in each row.
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Determinants

@ nxn:If Ae R™" let A¢ be obtained from A by deleting row 1 and
column k. Then,

det(A) = a;; det(Aq) — ajadet(Az) + - - + (—1)"a;, det(Ap).

@ Expanded out, the determinant will look like the sum/difference of
a bunch of products, e.qg.:

air a2 a3
A=| a1 axn axs
as1 daz2 ds3

det(A) = a11axass — ar1823832 — 812821833
+ a12823831 + a13821832 — A13822a31-
@ Each one of the products, e.g. ajza»1ass, will have one entry in

each column, and also one entry in each row.

@ The sign of the product will be the sign of the permutation (can
look up if you are curious).
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Determinant facts
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Determinant facts

@ The determinant is & the volume of the parallelepiped formed by
the columns of the matrix.
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Determinant facts

@ The determinant is & the volume of the parallelepiped formed by
the columns of the matrix.

XX X

V=

B
z, z, z

@ From this, we can conclude that det(A) = 0 unless the columns of
A span the whole space R". That is, all of these are equivalent for
A e R™M:

det(A) # 0, A has rank n, Ais invertible.
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Determinant facts

@ The determinant is & the volume of the parallelepiped formed by
the columns of the matrix.

XX X

V=

B
z, z, z

@ From this, we can conclude that det(A) = 0 unless the columns of
A span the whole space R". That is, all of these are equivalent for
A e R™M:

det(A) # 0, A has rank n, Ais invertible.

© det(AT) = det(A)
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Determinant facts

@ The determinant is & the volume of the parallelepiped formed by
the columns of the matrix.

XX, X

RV

.“\ .‘.Z .‘AV

@ From this, we can conclude that det(A) = 0 unless the columns of
A span the whole space R". That is, all of these are equivalent for
A e R™M:

det(A) # 0, A has rank n, Ais invertible.

© det(AT) = det(A)
Q det(AB) = det(A) det(B).
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Eigenvalues and eigenvectors
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Eigenvalues and eigenvectors

@ An eigenvector of a matrix A € R™" is a nonzero vector x € R”
such that Ax = Ax.
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Eigenvalues and eigenvectors

@ An eigenvector of a matrix A € R™" is a nonzero vector x € R”
such that Ax = Ax.

@ The value ) is called an eigenvalue.
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Eigenvalues and eigenvectors

@ An eigenvector of a matrix A € R™" is a nonzero vector x € R”
such that Ax = Ax.

@ The value ) is called an eigenvalue.

c[a 3 TR -0

SO [ ? } is an eigenvector with eigenvalue 3.

David Rolnick COMP 761: Linear Algebra Il Sep 28, 2020 16/21



Eigenvalues and eigenvectors

@ An eigenvector of a matrix A € R™" is a nonzero vector x € R”
such that Ax = Ax.

@ The value ) is called an eigenvalue.

c[a 3 TR -0

SO [ ? } is an eigenvector with eigenvalue 3.

@ Note: If x is an eigenvector with eigenvalue A, then cx is too for
any ¢ # 0.
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Eigenvalues and eigenvectors

@ An eigenvector of a matrix A € R™" is a nonzero vector x € R”
such that Ax = Ax.

@ The value ) is called an eigenvalue.

c[a 3 TR -0

SO [ ? } is an eigenvector with eigenvalue 3.

@ Note: If x is an eigenvector with eigenvalue A, then cx is too for
any ¢ # 0.
@ In practice, we often scale x so that ||x|| = 1.
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Characteristic polynomial
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Characteristic polynomial

@ We can write Ax = Ax as (A— A)x =0, where | € R™"is the
identity matrix.
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Characteristic polynomial

@ We can write Ax = Ax as (A— A)x =0, where | € R™"is the
identity matrix.

@ When does this have solutions apart from x = 07
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Characteristic polynomial

@ We can write Ax = Ax as (A— A)x =0, where | € R™"is the
identity matrix.

@ When does this have solutions apart from x = 07
@ If (A— \l)is invertible, then x = (A— \/)~10 = 0.
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Characteristic polynomial

@ We can write Ax = Ax as (A— A)x =0, where | € R™" is the
identity matrix.

@ When does this have solutions apart from x = 07
@ If (A— \l)is invertible, then x = (A— \/)~10 = 0.
@ There can only be nonzero solutions x if (A — Al) is non-invertible.

David Rolnick COMP 761: Linear Algebra Il Sep 28, 2020 17/21



Characteristic polynomial

@ We can write Ax = Ax as (A— A)x =0, where | € R™" is the
identity matrix.

@ When does this have solutions apart from x = 07

@ If (A— \l)is invertible, then x = (A— \/)~10 = 0.

@ There can only be nonzero solutions x if (A — Al) is non-invertible.
@ That happens if det(A — \l) = 0.
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Characteristic polynomial

@ We can write Ax = Ax as (A— A)x =0, where | € R™" is the
identity matrix.

@ When does this have solutions apart from x = 07

@ If (A— \l)is invertible, then x = (A— \/)~10 = 0.

@ There can only be nonzero solutions x if (A — Al) is non-invertible.
@ That happens if det(A — \l) = 0.

@ Note that det(A — \/) is a degree-n polynomial in \.
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Characteristic polynomial

@ We can write Ax = Ax as (A— A)x =0, where | € R™" is the
identity matrix.

@ When does this have solutions apart from x = 07

@ If (A— \l)is invertible, then x = (A— \/)~10 = 0.

@ There can only be nonzero solutions x if (A — Al) is non-invertible.
@ That happens if det(A — \l) = 0.

@ Note that det(A — \/) is a degree-n polynomial in \.
@ Example

[ 2 2 [2-x 2 RVt
A{1/2 2],A—A/{ 12 2_/\},det(A M) =22 —4)+3.
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Characteristic polynomial

@ We can write Ax = Ax as (A— A)x =0, where | € R™" is the
identity matrix.

@ When does this have solutions apart from x = 07

@ If (A— \l)is invertible, then x = (A— \/)~10 = 0.

@ There can only be nonzero solutions x if (A — Al) is non-invertible.
@ That happens if det(A — \l) = 0.

@ Note that det(A — \/) is a degree-n polynomial in \.
@ Example

[ 2 2 [2-x 2 RVt
A{1/2 2],A—A/{ 12 2_/\},det(A M) =22 —4)+3.
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Characteristic polynomial

@ We can write Ax = Ax as (A— A)x =0, where | € R™" is the
identity matrix.

@ When does this have solutions apart from x = 07

@ If (A— \l)is invertible, then x = (A— \/)~10 = 0.

@ There can only be nonzero solutions x if (A — Al) is non-invertible.
@ That happens if det(A — \l) = 0.

@ Note that det(A — \/) is a degree-n polynomial in \.
@ Example
[ 2 2 [2-x 2 Cpn a2
A= { 12 2 ] , A== { 12 2.2 } , det(A—A) = A= —4X+3.

@ This is called the characteristic polynomial.

@ The characteristic polynomial’s roots = the eigenvalues (may be
complex).
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The trace

@ The trace tr(A) of a square matrix A is the sum of diagonal entries.
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The trace
@ The trace tr(A) of a square matrix A is the sum of diagonal entries.

2 2]
@ Example: tr[1/2 2]_4.
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The trace

@ The trace tr(A) of a square matrix A is the sum of diagonal entries.
@ Example: tr 2 2 =4
Ple-tr) 40 o | =%

@ Why is the trace the sum of the eigenvalues?
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The trace

@ The trace tr(A) of a square matrix A is the sum of diagonal entries.
@ Example: tr [ 2 2 =4.
1/2 2
@ Why is the trace the sum of the eigenvalues?
@ The characteristic polynomial is det(A — A/).
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The trace

@ The trace tr(A) of a square matrix A is the sum of diagonal entries.
@ Example: tr [ 2 2 =4.
1/2 2
@ Why is the trace the sum of the eigenvalues?
@ The characteristic polynomial is det(A — A/).

@ Let’s look at its A"~ term.
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The trace

@ The trace tr(A) of a square matrix A is the sum of diagonal entries.
@ Example: tr[ 2 2 ] =4.
1/2 2
@ Why is the trace the sum of the eigenvalues?
@ The characteristic polynomial is det(A — A/).

@ Let’s look at its A"~ term.
@ The only way to get A"~' in computing the determinant is via the
product of the diagonal entries.

[ 2 2 CJ2-x 2 e
A_{Vz 2],A—A/_{ 12 2A},det(A—A/)_A 4X+3.
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The trace

@ The trace tr(A) of a square matrix A is the sum of diagonal entries.
@ Example: tr [ 2 2 =4.
1/2 2
@ Why is the trace the sum of the eigenvalues?
@ The characteristic polynomial is det(A — A/).

@ Let’s look at its A"~ term.
@ The only way to get A"~' in computing the determinant is via the
product of the diagonal entries.

[ 2 2 CJ2-x 2 e
A_{Vz 2],A—A/_{ 12 2A},det(A—A/)_A 4X+3.

@ So the coefficient on A"~ comes from the product of the diagonal
entries (@11 — A)(aze — A) -+ (ann — N).
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The trace

@ The trace tr(A) of a square matrix A is the sum of diagonal entries.
@ Example: tr [ 2 2 =4.
1/2 2
@ Why is the trace the sum of the eigenvalues?
@ The characteristic polynomial is det(A — A/).

@ Let’s look at its A"~ term.
@ The only way to get A"~' in computing the determinant is via the
product of the diagonal entries.

[ 2 2 CJ2-x 2 e
A_[1/2 2],A—)\l_{ 12 2A},det(A—A/)_A 4X+3.

@ So the coefficient on A"~ comes from the product of the diagonal
entries (a1 — A\)(ax2 — A) -+ (@ — A).
@ But by Vieta’s formulas, this coefficient is just:

n
Z ai = tr(A).
k=1
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Determinants and eigenvalues

Why is the determinant the product of the eigenvalues?
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Determinants and eigenvalues

Why is the determinant the product of the eigenvalues?
@ Let’s look at the constant term of det(A — A/).
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Determinants and eigenvalues

Why is the determinant the product of the eigenvalues?
@ Let’s look at the constant term of det(A — A/).
@ Setting A = 0, get constant term det(A).
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Determinants and eigenvalues

Why is the determinant the product of the eigenvalues?
@ Let’s look at the constant term of det(A — A/).

@ Setting A = 0, get constant term det(A).
@ By Vieta’s formulas, the product of the roots equals det(A).

[ 2 2 [2-a 2 2
A_L/Z 2],A—)\l_[ P ZA},det(A—)\l)_A 4)+3.
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Next time!

Graph Theory Il
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